MrXiao

[机器学习100天][系列学习笔记] 第4天:逻辑回归(Logistic Regression)
今天我们要学习逻辑回归,首先粗略了解一下逻辑回归的概念。逻辑回归我们不妨先看一个线性回归模型:$ y=ax+b $...
扫描右侧二维码阅读全文
27
2019/01

[机器学习100天][系列学习笔记] 第4天:逻辑回归(Logistic Regression)

今天我们要学习逻辑回归,首先粗略了解一下逻辑回归的概念。

逻辑回归

我们不妨先看一个线性回归模型:$ y=ax+b $,显然,线性回归中不做限制地情况下输入和输出都是连续的。
但对逻辑回归,一般地对连续的输入,输出是离散的,且大多数时候结果只是0、1中的一个。准确地说,逻辑回归并不属于回归,而是一种分类器(二分类)。

本文注重逻辑回归的实现,明天会深入理解一下线性回归和逻辑回归的数学原理。(趁还看得懂)

今天的目标是通过社交网络数据集预测用户是否有购车需求从而精准推送广告,数据集部分截图如下:

该数据集包含了社交网络中用户的信息。这些信息涉及用户ID,性别,年龄以及预估薪资。一家汽车公司刚刚推出了他们新型的豪华SUV,我们尝试预测哪些用户会购买这种全新SUV。并且在最后一列用来表示用户是否购买。我们将建立一种模型来预测用户是否购买这种SUV,该模型基于两个变量,分别是年龄和预计薪资。因此我们的特征矩阵将是这两列。我们尝试寻找用户年龄与预估薪资之间的某种相关性,以及他是否购买SUV的决定。

步骤1 | 数据预处理

导入库

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

导入数据集

dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
Y = dataset.iloc[:,4].values

将数据集分成训练集和测试集

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.25, random_state = 0)

特征缩放

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

意义:使得后续训练过程更快,减少异常现象的发生,具体看明天讲解的原理。

步骤2 | 逻辑回归模型

该项工作的库将会是一个线性模型库,之所以被称为线性是因为逻辑回归是一个线性分类器,这意味着我们在二维空间中,我们两类用户(购买和不购买)将被一条直线分割。然后导入逻辑回归类。下一步我们将创建该类的对象,它将作为我们训练集的分类器。

将逻辑回归应用于训练集

from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X_train, y_train)

步骤3 | 预测

预测测试集结果

y_pred = classifier.predict(X_test)

步骤4 | 评估预测

我们预测了测试集。 现在我们将评估逻辑回归模型是否正确的学习和理解。因此这个混淆矩阵将包含我们模型的正确和错误的预测。

生成混淆矩阵

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

可视化

from matplotlib.colors import ListedColormap
X_set,y_set=X_train,y_train
X1,X2=np. meshgrid(np. arange(start=X_set[:,0].min()-1, stop=X_set[:, 0].max()+1, step=0.01),
                   np. arange(start=X_set[:,1].min()-1, stop=X_set[:,1].max()+1, step=0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(),X1.max())
plt.ylim(X2.min(),X2.max())
for i,j in enumerate(np. unique(y_set)):
    plt.scatter(X_set[y_set==j,0],X_set[y_set==j,1],
                c = ListedColormap(('red', 'green'))(i), label=j)

plt. title(' LOGISTIC(Training set)')
plt. xlabel(' Age')
plt. ylabel(' Estimated Salary')
plt. legend()
plt. show()

X_set,y_set=X_test,y_test
X1,X2=np. meshgrid(np. arange(start=X_set[:,0].min()-1, stop=X_set[:, 0].max()+1, step=0.01),
                   np. arange(start=X_set[:,1].min()-1, stop=X_set[:,1].max()+1, step=0.01))

plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(),X1.max())
plt.ylim(X2.min(),X2.max())
for i,j in enumerate(np. unique(y_set)):
    plt.scatter(X_set[y_set==j,0],X_set[y_set==j,1],
                c = ListedColormap(('red', 'green'))(i), label=j)

plt. title(' LOGISTIC(Test set)')
plt. xlabel(' Age')
plt. ylabel(' Estimated Salary')
plt. legend()
plt. show()

Last modification:January 27th, 2019 at 07:48 pm
If you think my article is useful to you, please feel free to appreciate

Leave a Comment